ANALYSIS OF TEMPERATURE STRESSES IN ACTIVE
ELEMENTS OF A LASER

B. R. Belostotskii UDC 536,42:621,375,9

A method of analyzing the temperature stresses in active elements of optical quantum gen-
erators operating in the pulsed and continuous modes is elucidated,

The presence of a nonuniform temperature field in the active body of an optical quantum generator
(laser) specifies the appearance of temperature stresses which, in turn, result often in significant deforma-
tion and fissuring of the sample, and degradation of its characteristics,

Let us examine the active element of a laser, of circular cylindrical shape. The existence of three
principal normal stresses, radial o)., tangential op, and axial ¢, results from an analysis of the equilibrium
conditions of a volume element of the circular cylinder cut in the shape of an annular sector, If it is as-
sumed that the active substance is an isotropic medium, the thermophysical and strength characteristics of
which (8 the coefficient of linear temperature expansion; ¥ the Poisson ratio; and E the elastic modulus) are
independent of the temperature, then the magnitudes of the mentioned stresses are determined in general
form from the relationships [1]:

- 2(ff‘v){{5(FO)}o—.x"r‘ [B(Fo)o- s (1)

oy = —PE_ (_28(r, Fo) + [BENot + [BFO)oars)s )
2(1—w) ,

0, = Tr% [—®(ry, Fo)+ v [8(Fo)|o] + &.E, (3)

where {§(F0)]gr . is the mean-volume excess temperature of a cylinder of radius r; written as follows:

O (FO) 07y = 5 3 (rl, Fo) r](irl, ( ])
1
0

In the approximation of plane deformation, i.e,, upon compliance with the condition

1

5‘ rodry =0, (5)
i
it is easy to show that the following equalities are valid at any time:

at any point of the cylinder

G, = 0, -~ 0y, (6)
on the cylinder surface (for ry = 1)
0,=0, o0,=0,, (7)
at the center of the cylinder @for ry = 0)
0, = O (8)
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Fig.1l. Temperature drop in fractions of #;,,, between the cen-
ter and surface of the active element of a lager in the quasi-
stationary mode: a, c) temperature drop AT for Fo = Fo.; b, c)
maximum temperature drop AT, (dashed curve corresponds to
the temperature drop for a CW laser),

For practical purposes it is inferesting to estimate the maximum stresses. They can originate dur-
ing the formation of a maximum temperature difference between the center and the surface, Determination
of this latter is fraught with great difficulties since it is not known for which value of Fo the terperature
stress calculation should be executed,

As has been established earlier [2], the quasistationary temperature mode of the active element of

a pulsed laser is characterized by the fact that for quasicontinuous pulses the same temperature field is
reproduced over the sample cross section to the end of each cycle, During adiabatic homogeneous pumping,
the temperature of each point of the sample increases by the same quantity &imp! i.e., no change is observed
in the profile of the temperature field under the mentioned conditions of pumping progress, During cooling,
the temperature field varies in both magnitude and profile:

9 (ry, Fo) = 2impBiJ, (1,r1) exp (—piFo) (9)

ol Jy (uy) [0 + B} [1 — exp (—u7Fo )}

The deduction can be made that the profile of the temperature field at the beginning and ending of the
cooling period will be the same if, within one cycle, the temperature difference between the center and the
surface of the active body first starts to increase, reaches a maximum value, and then again decreases,

Attention is not ordinarily turned to this fact, Computations are carried out for Fo = Fo,; the re-
sults often turn out to be lowered, and the strength condition for the sample may not even be satisfied in
practice,

By using the Minsk-22 electronic computer in conjunction with Eq, (9), we succeeded in tracing the
change in the temperature drop between the center and the surface of the active body within a cycle in the
quasistationary mode for a number of Biot values, The computation was performed for n = 6; the numerical
values of the eigennumbers [y, were taken from a table presented in the monograph [3]. The results of the
computations are presented in Fig, 1,

As is seen from Fig, 1, the discrepancy in the quantities AT,, and AT can depend essentially on the
effectiveness of the cooling system used and the cycle duration, The greatest discrepancies are realized
for Bi—«, Ag the cycle duration diminigshes, the dependence of the difference [AT;,—AT] on the number
Fog is much weaker, and for Fo, < 0,01 is practically absent, For Fo, < 0,01, the quantity AT, is practical-
ly independent of the number Bi also, This means that the temperature mode for quasicontinuous pulsing is
equivalent to the temperature mode of a CW laser: in the continuous mode the quantity AT is independent of
the cooling system efficiency and is defined by [4]

AT 1 (10)
4FOC

Therefore, in this case the temperature stresses are determined by means of the expressions

g :——M(l——ﬁ), (11

" 4(1—w)
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T Oy = — PESmAT (1—3), (12)
Tension 4(1 —w)
N4
” o= ﬁEﬁimpAT“ 2, (13)
) 2(1 — )
5
g / £ For Fo > 0,1 it is impossible to use (11)-(13) since the results ob-
gl 92 8 hﬂ g tained are lowered (see the location of the dashed curve in Fig, 1b}.
] Using (1)~ (3) with (9) taken into account is difficult, especially for
? 097%5'- cases of taking account of the nonuniformity in pumping and heat ex-
K74 change during pumping, as well as because of the need to determine
= the time Fo at which AT, is realized, The problem is simplified
72 Compres- somewhat for calculations by means of relationships from approxi-
-0 ( 510? [ mate solutions obtained by using a variational method, say [5, 6]:
_ _ 8 (ry, Fo) == PBY;y— L (—kFo) (14)
Fig.2, Temperature stress dis- 1—exp(—kFao)

tribution over the radius of the

active body (o, kg/cm?), where

Bi | A 8Bi p 1 —0.5B . (15)

2+Bi’ 4+Bi’ - I—B—{—ﬁ
3

The method of determining the integration constants in this case reduces to the fact that for the be-
ginning of the cooling period, i.e., for Fo = 0, the temperature difference between the center and the surface
turns out to be somewhat greater as compared with the corresponding quantities obtained from the exact
solutions, The quantity AT is determined from the expregsion

arT— —PB (16)
1— exp (—&Foc)

Taking account of the quite approximate values, as a rule, of the magnitudes of the thermophysical
and strength characteristics of active materials, the last remark turns out to be quite essential and affords
the possibility of recommending the use of Egs, (11)~(13), taking account of (16), for the determination of the
temperature stresses,

In Fig, 2 we present as an illustration the results of computing the temperature stresses in a specific
sample of neodymium glass (length 75 mm, diameter 4 mm) with water cooling (Bi = 15) at a pulse repeti~
tion rate f = 0,1 Hz (Fo, ~ 0,1), It was assumed in the computations that E = 6.6 .10 kg/cm?; v = 0,25; 8
=1,08:1075 deg™?, Calorimetry of the active body determined the temperature jump during the pumping as
Jimp =4°C,

NOTATION
ry=r/R is the dimensionless running radius of the cylinder;
€y is the relative strain along the cylinder axis;
Fo =ar/R?, Fo, =ar,/R? are the Fourier numbers for the times 7 and Tes
T is the running time;
Te is the time between alternate pumping pulses (cycle duration);
Bi =aR/A ig the Biot number,

The remaining notation is taken from [3].
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